
1. Introduction

The one-center location problem in the plane, also
called the one facility min-max location problem, may
be stated as follows: given m points pi ∈ IR2, i = 1, 2, ...,
m, and some distance function d(x, y) for x, y ∈ IR2, the
problem is to determine the location of a point x ∈ IR2

that minimizes the maximum distance d(pi, x) over i =
1, ..., m. The problem is denoted by P1 and written as
follows:

The equivalent, constrained version of P1 is written as
follows:

P1: min z
s.t. z ≥ d(pi, x) i = 1, ..., m.

Problem P1 was first reported by Sylvester [6] using
Euclidean distance. A substantial number of papers

have appeared on the one-center problem assuming a
variety of distances. Articles and books with reviews of
the literature include Hearn and Vijay, [4], Drezner [1],
Drezner and Hamacher [2].

A related problem is the one-median, or total-cost,
location problem in which the maximum operator is
replaced by the summation operator. Both the center
and the median problems have been studied extensive-
ly for Euclidean distance, for lp distances for 1 ≤ p ≤ ∞,
and on networks [1,2]. Witzgall [9] considered the
median problem for polyhedral norms and noted that
the problem could be formulated as a linear program-
ming problem. He also noted that “the linear program
had special properties that should be exploited for an
efficient solution”, and that “more research in this area
is indicated.”

Ward and Wendell [8] considered both the one-medi-
an and the one-center problems using block distance,
which is the special case of polyhedral distances in
which the polytope is symmetric. For both the one-
median and the one-center problems they reported two
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linear programming formulations based on characteri-
zations of block distance in terms of fundamental direc-
tions and polar directions.

This paper considers the two linear programming
formulations of the one-center problem with block dis-
tances, as presented by Ward and Wendell. The equiva-
lence of these two formulations follows from the equiv-
alence of the block distance representations. The dual
simplex algorithm is applied to the linear programming
formulation based on polar directions of the block dis-
tance, and a geometric interpretation is presented. This
interpretation is applied to the Euclidean distance one-
center problem and provides an alternative update pro-
cedure for the dual algorithm.

This paper actually considers a generalization of P1,
the weighted one-center problem, in which there is a
positive weight wi associated with each point pi, i = 1,
..., m. The problem is denoted by P2 and the con-
strained version is stated as follows:

P2: min z
s.t. z ≥ wid(pi, x) i = 1, ..., m.

2. Block Distance

Block distance is a special case of general norms and
were introduced to location problems by Witzgall [9]
and by Ward and Wendell [7,8]. Block distance is
defined in the plane with respect to a symmetric poly-
tope as its unit ball, denoted by B. The polytope B is
assumed to have 2p distinct extreme points, for some
integer p ≥ 2. The vectors corresponding to the extreme
points are called fundamental directions, and are denot-
ed by b1, b2, ..., b2p where bp+k = –bk for k = 1, ..., p.
Assume that the fundamental directions are ordered
counter clockwise, and for notational convenience, let
b2p+k = bk for k = 1, ..., p. Figure 1 shows an example
with p = 4 fundamental directions and the correspon-
ding unit ball.

The block distance between the points xo and xd with
respect to a given set of 2p fundamental directions b1,
..., b2p, is denoted dp(xo, xd) and is defined to be the
objective function value of the following linear pro-
gramming problem, denoted by LPD:

For any two fundamental directions bj, bk ∈ IR2 with
j ≠ k and j ≠ k + p, let Γ(bj, bk) denote the cone in IR2

generated by bj and bk, that is, Γ(bj, bk) = {x : x = bjαj +
bkαk, αj, αk ≥ 0}.

For any two points xo and xd ∈ IR2, the vector xo – xd

must be in some cone generated by two adjacent funda-
mental directions, that is, xo – xd ∈ Γ(bk, bk+1) for some
k = 1, ..., 2p. Thus xo – xd = bkαk + bk+1αk+1 for some non-
negative scalars αk and αk+1. The vector xd – xo might
also be in one or more cones generated by pairs of non-
adjacent fundamental vectors. However, the following
Property shows that an optimal basis to the linear pro-
gram LPD must correspond to adjacent fundamental
directions.

Property 1: Suppose b1, b2, b3 ∈ IR2 are fundamental
directions of some unit ball B. Suppose x ∈ Γ(b1, b2)
with x = b1α1 + b2α2, and α1, α2 ≥ 0. Suppose b3 ∈ Γ(b1,
b2) with b3 = b1β1 + b2β2, β1 + β2 > 1 and β1, β2 ≥ 0. If
x ∈ Γ(b1, b3) with x = b1γ1 + b3γ3, γ1, γ3 ≥ 0 then γ1 + γ3 <
α1 + α2. If x ∈ Γ(b3, b2) with x = b3γ3 + b2γ2, γ3, γ2 ≥ 0
then γ3 + γ2 < α1 + α2.
Proof: Suppose x ∈ Γ(b1, b3), then x = b1γ1 + b3γ3 =
b1(γ1 + γ3β1) + b2(γ3β2) by substitution. Since the repre-
sentation of x as a nonnegative linear combination of b1

and b2 is unique, and x = b1α1 + b2α2 then α1 = γ1 + γ3β1

and α2 = γ3β2. Thus α1 + α2 = γ1 + γ3β1 + γ3β2 = γ1 +
γ3(β1 + β2) > γ1 + γ3. If x ∈ Γ(b1, b2) the proof is analo-
gous.

Suppose that xo – xd∈ Γ(bk, bk+1) for some k. Then the
2 by 2 matrix [ bk bk+1 ] is a feasible basis for the lin-
ear program with

and

where eT = (1, 1).
Block distance may also be characterized in terms of

the polar set B0 of the polytope B. The polar set B0 is
also a symmetric polytope defined by B0 = {v : bT

k v ≤ 1,
k = 1, ..., 2p}. In general, the facets of B are in one-to-
one correspondence with the extreme points of B0. In
IR2, B0 has the same number of extreme points as B,
which correspond to polar directions and are denoted
by b0

k for k = 1, ..., 2p. It may be shown that the polar
directions are given by
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Consider the dual of LPD, stated below as DLPD:

The constraint set of DLPD is the polar set B0 which, by
the Representation Theorem [5], may be written as B0 = 

Substituting into the
dual objective function gives the equivalent characteri-
zation of block distance in terms of polar directions:

Block distances are used to model travel distance in
which the directions of travel are restricted to the fun-
damental directions. The l1 distance is an example of a
block distance with p = 2. Its fundamental directions
are given by b1 = εε1, b2 = εε2, b3 = –εε1, and b4 = –εε2, where
εεi is the ith unit vector in IR2. The polar directions for
the l1 distance are given by b1

0T = (1, 1), b2
0T = (–1, 1),

b0
3 = –b0

1, and b0
4 = –b0

2, which are also the fundamental
directions of the l∞ distance, a block distance with p =
2.

Figure 1 illustrates a block distance with p = 4 and
includes the fundamental directions bk, k = 1, ..., 8, the
unit ball and the polar directions bk

0, k = 1, ..., 8. The
components of bk and bk

0 used in Figure 1 are given
below:

3. Linear Programming Formulations

Ward and Wendell [8] presented two linear program-
ming formulations of the one facility minmax location
problem (with all wi = 1) using block distance: one in
terms of fundamental directions and one in terms of
polar directions. These two formulations are given
below for problem P2, and denoted as LP1 and LP2.
The expression of block distance in terms of polar
directions is substituted into problem P2 to obtain the
following:

min z
s.t. z ≥ maxk=1,...,2p wibk

0T (pi – x) for i = 1, ..., m.

which is restated below as a linear program:

LP1 : min z
s.t. z + wibk

0T x ≥ wibk
0Tpi for i = 1, ..., m,

and k = 1, ..., 2p.

Substituting the expression of block distance in terms
of fundamental directions into problem P2 gives the
following:

which is restated as a linear program with all variables
on the left as follows:
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The equivalence between the representations of block
distance in terms of fundamental directions and in
terms of polar directions implies that the formulations
LP1 and LP2 are equivalent. Only problem LP1 will be
considered in the subsequent development.

The dual to LP1 is given below where πi,k, i = 1, ...,
m, k = 1, ..., 2p, are the dual variables.

Since the dual constraints are of rank three, a dual basis
has the form:

and the dual basic variables are denoted by πi1,k1
, πi2,k2

,
πi3,k3

, where ij ∈ {1, ..., m} and kj ∈ {1, ..., 2p} for j = 1,
2, 3. The three weighted polar directions that determine
a dual feasible basis are called basic weighted polar
directions.

Given a dual feasible basis, the dual simplex algo-
rithm proceeds as follows. The basic weighted polar
directions in the dual feasible basis correspond to active
(equality) constraints in the primal, so that the variables
z*, x* are determined by a solution to the following
system of linear equations.

If z*, x* are primal feasible, that is, if

z* ≥ wibk
0T (pi – x*), for all i = 1, ..., m, and k = 1, ..., 2p,

then x* and z* are optimal. Otherwise, for some point
pq and some direction bτ0,

z* < wqbτ0T (pq – x*)

which implies that the point pq is outside the ball cen-
tered at x* with radius z*/wq. Choosing the most violat-
ed constraint corresponds to choosing a point of great-
est weighted distance from x*.

The direction bτ0 and the point pq determine the

column that enters the dual basis. The leaving

column may be determined by using the simplex rules,
that is by using the following equations to compute the
components d1, d2 and d3 of the direction vector corre-
sponding to the basic columns:

Then the step size α and the leaving basic column are
computed using the minimum ratio test:

and the column leaves the basis. The weight-

ed polar directions in the new dual feasible basis are
wij*–1

b0
kj*–1

, wqbτ0, and wij*+1
b0

kj*+1
. The algorithm continues

until primal feasibility is achieved. Problem LP1 is
bounded and feasible, so that an optimal solution exists.

4. Geometric Interpretation of the Dual
Basis Update

The update of the dual basis in the simplex algorithm
applied to problem LP2 is analyzed in terms of the
geometry associated with the basic weighted polar
directions wij

b0
kj
.

Consider a dual feasible basis

with basic dual variables πi1, k1
, πi2, k2

, πi3, k3
, for ij ∈ {1, ...,

m}, kj ∈ {1, ..., 2p} and j = 1, 2, 3. Assume the weight-
ed polar directions in the dual feasible basis are ordered
counterclockwise with respect to j = 1, 2, 3. We adopt
the notation that if j = 1, then j – 1 = 3, and if j = 3, then
j + 1 = 1.

Geometrically, a dual feasible basis implies that the
vector 0 may be expressed as a convex combination of
basic weighted polar directions, that is,
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πi1, k1
+     πi2, k2

+ πi3, k3
= 1

wi1
b0

k1
πi1, k1

+ wi2
b0

k2
πi2, k2

+ wi3
b0

k3
πi3, k3

= 0
πi1, k1

,          πi2, k2
,     πi3, k3

, ≥ 0.

If the dual feasible basis is non-degenerate, then
πij, kj

> 0 for j = 1, 2, 3 and 0 is a strict convex combina-
tion of the basic weighted polar directions. In this case
each basic weighted polar direction is contained in the
cone generated by the negative of the other two basic
weighted polar directions, that is, wij–1

b0
kj–1
∈

int(Γ(–wij
b0

kj
, –wij+1

b0
kj+1

)) for each j = 1, 2, 3, where

int(Γ(–wij
b0

kj
, –wij+1

b0
kj+1

)) =

{x : x = –wij
b0

kj
α – wkj+1

b0
kj+1
β ; α, β > 0}.

Also, for any weighted polar direction wqb0
τ , there is

some j = 1, 2, 3 so that wqb0
τ ∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

).
Figure 2 illustrates the non-degenerate case with solid
arrows corresponding to the basic weighted polar direc-
tions wij

b0
kj

and dashed arrows corresponding to –wij
b0

kj
,

for j = 1, 2, 3. For the non-degenerate case the basic
weighted polar directions form a simplex in IR2. Figure
2 also illustrates wqb0

τ ∈ Γ(–wij
b0

kj
, –wij+1

b0
kj+1

).

In the degenerate case, πij, kj
= 0 for exactly one j = 1,

2, or 3, and πij–1,kj–1
> 0, πij+1, kj+1

> 0. Figure 3 illustrates
the degenerate case. Note that if πij, kj

= 0, then wij+1
b0

kj+1
∈

Γ(–wij
b0

kj
, –wij–1

b0
kj–1

), and wij–1
b0

kj–1
∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

),
but wij

b0
kj
∉ Γ(–wij+1

b0
kj+1

, –wij–1
b0

kj–1
. Also, if πij, kj

= 0, then
for any weighted polar direction wqb0

τ , either wqb0
τ ∈

Γ(–wij
b0

kj
, –wij+1

b0
kj+1

) or wqb0
τ ∈ Γ(–wij

b0
kj
, –wij–1

b0
kj–1

), or
wqb0

τ ∈ IR2 \ {Γ(–wij
b0

kj
, –wij+1

b0
kj+1

)∪Γ(–wij
b0

kj
, –wij–1

b0
kj–1

)}.
For the non-degenerate case, the basis update rule is

given as follows: if wqb0
τ ∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

), for some

j, and since wij–1
b0

kj–1
∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

), then wqb0
τ

replaces wij–1
b0

kj–1
. The new basic weighted polar direc-

tions are wqb0
τ , wij

b0
kj

and wij+1
b0

kj+1
. If wqb0

τ ∈ int(Γ(–wij
b0

kj
,

–wij+1
b0

kj+1
)), then the new basic weighted polar directions

are non-degenerate. If wqb0
τ coincides with –wij

b0
kj

or
with –wij+1

b0
kj+1

, then there is a tie for the replaced
weighted polar direction and the new basis is degener-
ate. That is, if wqb0

τ coincides with –wij
b0

kj
, then wqb0

τ ∈
Γ(–wij

b0
kj
, –wij+1

b0
kj+1

) and wqb0
τ ∈ Γ(–wij

b0
kj
, –wij–1

b0
kj–1

) and
either wij–1

b0
kj–1

or wij+1
b0

kj+1
may be replaced. If wqb0

τ coin-
cides with –wij+1

b0
kj+1

, then wqb0
τ ∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

) and
wqb0

τ ∈ Γ(–wij+1
b0

kj+1
, –wij–1

b0
kj–1

) and either wij–1
b0

kj–1
or wij

b0
kj

may be replaced.
For the degenerate case suppose πij, kj

= 0. If wqb0
τ ∈

Γ(–wij
b0

kj
, –wij+1

b0
kj+1

), then wqb0
τ replaces wij–1

b0
kj–1

. The new
basic weighted polar directions are wqb0

τ , wij
b0

kj
and

wij+1
b0

kj+1
. If wqb0

τ ∈ int(Γ(–wij
b0

kj
, –wij+1

b0
kj+1

)), then the new
basic weighted polar directions are non-degenerate. If
wqb0

τ coincides with –wij
b0

kj
, then wqb0

τ ∈ Γ(–wij
b0

kj
,

–wij+1
b0

kj+1
) and wqb0

τ ∈ Γ(–wij
b0

kj
, –wij–1

b0
kj–1

) and either
wij–1

b0
kj–1

or wij+1
b0

kj+1
may be replaced and the new basis is

degenerate. However, if wqb0
τ coincides with –wij+1

b0
kj+1

,
then wqb0

τ ∈ Γ(–wij
b0

kj
, –wij+1

b0
kj+1

) only, so that only
wij–1

b0
kj–1

is replaced. The new basis is degenerate.
The degenerate case with πij, kj

= 0 and wqb0
τ ∈

Γ(–wij
b0

kj
, –wij–1

b0
kj–1

), is analogous to the degenerate case
in the preceding paragraph with j + 1 interchanged with
j – 1 throughout.

Finally, consider the degenerate case with πij, kj
= 0

but wqb0
τ ∉ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

), and wqb0
τ ∉ Γ(–wij

b0
kj
,

–wij–1
b0

kj–1
). In this case wqb0

τ replaces wij
b0

kj
. The new basic

weighted polar directions are wij–1
b0

kj–1
, wqb0

τ and wij+1
b0

kj+1
and remains degenerate.

The following Property shows that the new weighted
polar directions determined by the geometric proce-
dures above are basic feasible.

Property 2: Suppose the weighted polar directions
wij–1

b0
kj–1

, wij
b0

kj
, and wij+1

b0
kj+1

, are basic feasible. For either
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Fig. 2. Non-degenerate basic feasible weighted polar directions.

Fig. 3. Degenerate basic feasible weighted polar directions.



the non-degenerate or degenerate case, suppose wqb0
τ =

–wij
b0

kj
βj – wij+1

b0
kj+1
βj+1 with βj, βj+1 ≥ 0. Then the weight-

ed polar directions wij+1
b0

kj+1
, wqb0

τ , and wij
b0

kj
are basic fea-

sible.
Proof: The assumption wqb0

τ = –wij
b0

kj
βj – wij+1

b0
kj+1
βj+1

with βj, βj+1 ≥ 0 implies wij
b0

kj
βj + wqb0

τ + wij+1
b0

kj+1
βj+1 =

0. Let r = βj + 1 + βj+1 > 0. Let π′ij, kj
= ≥ 0, π′q,τ = ≥

0, π′ij+1, kj+1 = ≥ 0. Thus π′ij, kj
+ π′q,τ + π′ij+1, kj+1 = 1, and

the weighted polar directions wij+1
b0

kj+1
, wqb0

τ , and wij
b0

kj
are dual feasible. Observe that if either βj = 0 or βj+1 =
0, the new basic weighted polar directions are degener-
ate. 

The next property shows that the geometric replace-
ment rule corresponds to the minimum ratio rule of the
simplex algorithm.

Property 3: Suppose the weighted polar directions
wij–1

b0
kj–1

, wij
b0

kj
, and wij+1

b0
kj+1

, are basic feasible, and sup-
pose wqb0

τ is the entering weighted polar direction and
that wqb0

τ ∈ Γ(–wij
b0

kj
, –wij+1

b0
kj+1

). The geometric rule that
wqb0

τ replaces wij–1
b0

kj–1
is equivalent to the minimum ratio

rule of the simplex algorithm.
Proof: The proof is given for the non-degenerate
case. The proof of the degenerate case is similar. First
we show that if wqb0

τ ∈ Γ(–wij
b0

kj
, –wij+1

b0
kj+1

), then 
minj=1,2,3{ : dj < 0} = .

Dual feasibility implies the following equations:

wij–1
b0

kj–1
πij–1,kj–1

+ wij
b0

kj
πij, kj

+ wij+1
b0

kj+1
πij+1, kj+1

= 0       (1)

πij–1,kj–1
+ πij, kj

+           πij+1, kj+1
= 1.      (2)

The components of the direction vector determined by
the vector wqb0

τ are given by the following equations:

–wij–1
b0

kj–1
dj–1 – wij

b0
kj
dj – wij+1

b0
kj+1

dj+1 = wqb0
τ (3)

dj–1 –  dj –    dj+1 =    1.          (4)

The assumption that wqb0
τ ∈ Γ(–wij

b0
kj
, –wij+1

b0
kj+1

) implies

–wij
b0

kj
βij, kj

– wij+1
b0

kj+1
βij+1, kj+1

= wqb0
τ ,              (5)

where βij, kj
≥ 0 and βij+1, kj+1

≥ 0. Equations (3) and (5)
combine to give

wij–1
b0

kj–1
(–dj–1) + wij

b0
kj
(βij, kj

– dj) + wij+1
b0

kj+1
(βij+1, kj+1

– dj+1) = 0

and equation (4) implies that

–dj–1 + (βij+1, kj+1
– dj) + (βij+1, kj+1

– dj+1) = βij, kj
+ βij+1, kj+1

+ 1.

Dividing through the last equation by the right hand
side, and comparing the resulting two equations to (1)
and (2), shows that

so that dij–1
< 0 since πij–1, kj–1

> 0. Equation (1) implies
that

Substitute this expression into equation (3), multiply
through by πij–1, kj–1

and divide through by –dj–1 to get

If dj ≥ 0, the first coefficient is positive. If dj < 0, the
first coefficient is non-negative if and only if

A similar argument holds for the second coefficient.
The third coefficient is positive. Thus, the new coeffi-
cients are non-negative if and only if α = is the
minimum ratio.

To prove the converse, suppose that minj=1,2,3{ :
dj < 0} = , and show that wqb0

τ ∈ Γ(–wij
b0

kj
,

–wij+1
b0

kj+1
).

By the minimum ratio assumption, dj–1 < 0. If dj < 0,
then by the minimum ratio, and the first
coefficient in equation (6) is non-negative. If dj ≥ 0, the
first coefficient in equation (6) is non-negative. A sim-
ilar argument holds for dj+1 and the second coefficient in
equation (6). Thus wqb0

τ ∈ Γ(–wij
b0

kj
, –wij+1

b0
kj+1

). 

Properties 2 and 3 provide a geometric rule that
could be used to determine the leaving column of a dual
basis in the basis update step. However, the equivalent
minimum ratio rule of the simplex algorithm is more
efficient.

In the next section, the equivalence is used to show
that the minimum ratio rule may be used to update the
dual algorithm applied to the Euclidean distance one-
center problem, which is an improvement over existing
geometrical update rules.
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The results of the last two sections may be extended
to polyhedral norms with consideration given to the
asymmetry. The preceding results may also be extend-
ed to IRn with additional complexities and notation.

5. Euclidean Distance Problem

Considered next is the one-center location problem
using Euclidean distance and assuming all weights wi =
1. The constrained version of this problem is written as
follows:

P2: min z
s.t. z ≥ l2(pi, x) i = 1, ..., m.

Euclidean distance may be considered as a block dis-
tance with p → ∞ and whose unit ball is the circle of
radius 1. There is a fundamental direction for every
point on the unit circle and each fundamental direction
is of unit length. The polar directions for Euclidean dis-
tance are identical to the fundamental directions. Given
two points pi and x, the unit vector represents the
polar direction from x to pi. The polar direction that
maximizes the dot product with pi – x is the unit vector

. Thus the Euclidean distance may be interpreted in
terms of polar directions and is written as: l2(pi, x) =

(pi – x). Problem P2 is then written as:

P2: min z
s.t. z ≥ (pi – x) i = 1, ..., m.

An alternative and equivalent statement of problem
P2 is to use the squared Euclidean distance, that is, l2

2(pi,
x) = (pi – x)T (pi – x). The squared Euclidean distance
between the points pi and x may also be considered as
a block distance with p→ ∞ and whose unit ball is the
circle of radius |pi – x|. There is a fundamental direction
for every point on the unit circle, and the polar direc-
tions are identical to the fundamental directions. Given
two points pi and x, pi – x is the polar direction from x
to pi. Problem P2 for the squared Euclidean distance is
written as:

P2: min z
s.t. z ≥ (pi – x)T (pi – x) i = 1, ..., m.

The squared Euclidean distance problem has the advan-
tage that the constraints are differentiable. This leads to
the Karush-Kuhn-Tucker conditions for problem P2: A
point x and a radius z are optimal to P2 if and only if
there exists πi for i = 1, ..., n, such that:

Conditions (7) represent primal feasibility, condi-
tions (8), (9), (10) represent dual feasibility, and condi-
tions (11) represent complementary slackness. The dual
feasibility conditions are analogous to constraints of the
dual problem of LP1. For a given x, the dual constraints
are of rank three and a dual basis has the form:

The dual variables are denoted by πi1
, πi2

and πi3
respec-

tively. The polar directions pij
– x for j = 1, 2, 3 that

determine a dual feasible basis are called basic polar
directions.

Elzinga and Hearn [3], report an efficient dual based
algorithm for solving the Euclidean distance min-max
problem that is described as follows. Choose three
points pij

, ij ∈ {1, ..., m} and j = 1, 2, 3. In the primal
phase of the algorithm, the min-max solution x for
these three points is determined as follows. If the three
points form an acute triangle, then x is the intersection
of the perpendicular bisectors of the line segment
between any two pairs of points. If the three points
form an obtuse triangle, then x is the mid point of the
line segment between the pair of points forming the
longest side (opposite the obtuse angle) of the triangle.
In either case, z is the maximum distance from x to the
three points.

Next the solution x and z is checked for primal feasi-
bility. If the distance between x and pi does not exceed
z for all i = 1, ..., m, then x and z is an optimal solution.
Otherwise, some point pτ is chosen that violates primal
feasibility. The Elzinga-Hearn algorithm provides a
geometric procedure to determine which of the three
points pij

, j = 1, 2, 3 is replaced by pτ and the algorithm
continues.

The Elzinga-Hearn geometric procedure for deter-
mining which point is replaced by pτ is described as fol-
lows: Determine the point pij

, j = 1, 2, 3 that is of great-
est distance from pτ, say pij

. If the point pij–1
(or pij+1

) and
pτ are on the same side of the line through pij

and x, then
pτ replaces pij–1

(or pij+1
). Figure 4 illustrates an example

where pτ replaces pij–1
.
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In terms of dual feasibility, the three points pij
for j =

1, 2, 3 correspond to the basic polar directions pij
– x in

the dual basis. If the three points form an acute triangle,
the corresponding basic polar directions are non-degen-
erate and form a simplex in IR2. If the three points form
an obtuse triangle, the corresponding basic polar direc-
tions are degenerate. The point pτ corresponds to the
polar direction pτ – x that will become basic and replace
some existing basic polar direction. Figure 4 illustrates
the basic polar directions.

The Elzinga-Hearn procedure is now compared to
the geometric replacement rule developed above.
Suppose pτ – x ∈ Γ(–pij

+ x, –pij+1
+ x). Then the point

farthest from pτ is either pij
or pij+1

. By dual feasibility,
pij–1

– x ∈ Γ(–pij
+ x, –pij+1

+ x). The replacement rule
developed above states that pτ – x replaces pij–1

– x. The
inclusion pij–1

– x ∈ Γ(–pij
+ x, –pij+1

+ x) implies that pij–1
and pτ are on the same side of the line through pij

and x,
and that pij–1

and pτ are on the same side of the line
through pij+1

and x. Thus, the replacement rules are
equivalent. If the basic polar directions are degenerate,
a similar argument shows the equivalence of the
replacement rules.

Since the geometric replacement rule for block dis-
tance is equivalent to the minimum ratio rule of the
basis update, the minimum ratio rule provides an alter-
native to the Elzinga-Hearn geometric rule for selecting
the point to be replaced in the dual based algorithm for
the Euclidean distance min-max location problem.

The algebraic replacement rule for the un-weighted
Euclidean distance min-max problem has been extend-
ed to the weighted Euclidean distance min-max prob-
lem in a subsequent paper by the first author.
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Fig. 4. Euclidean distance example.


